Topics in Geometric Group Theory

Přední strana obálky
University of Chicago Press, 15. 10. 2000 - Počet stran: 310
0 Recenze
Google recenze neověřuje, ale kontroluje a odstraňuje podvodný obsah, pokud je identifikován
In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples.

The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.
 

Co říkají ostatní - Napsat recenzi

Na obvyklých místech jsme nenalezli žádné recenze.

Obsah

Introduction
1
Free products and free groups
17
Finitelygenerated groups
43
Finitelygenerated groups viewed as metric spaces Ðને ઝે
75
Finitelypresented groups
117
Growth of finitelygenerated groups
151
Groups of exponential or polynomial growth
187
The first Grigorchuk group
211
References
265
Index of research problems
295
Autorská práva

Další vydání - Zobrazit všechny

Běžně se vyskytující výrazy a sousloví

Oblíbené pasáže

Strana 278 - G. HIGMAN, Unrestricted free products and varieties of topological groups, J. London Math. Soc. 27(1952), 73-81. 12. ST Hu, "Homotopy Theory," Academic Press, New York/London, 1959. 13. AG KUROSH, "The Theory of Groups,
Strana 280 - On everywhere dense imbedding of free groups in Lie groups, Nagoya Math.
Strana 278 - Subgroups of finitely presented groups. Proc. Royal Soc. London Ser. A 262, 455-475 (1961).
Strana 277 - P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc. 4 (1954), 419-436.
Strana 272 - Geodesic automation and growth functions for Artin groups of finite type, Math. Ann. 301 (1995), 307-324.

O autorovi (2000)

Pierre de la Harpe is a professor of mathematics at the Université de Genève, Switzerland. He is the author, coauthor, or coeditor of several books, including La propriété (T) de Kazhdan pour les groupes localement compacts and Sur les groupes hyperboliques d'après Mikhael Gromov.

Bibliografické údaje