The Magnetic Circuit in Theory and Practice

Přední strana obálky
Longmans, 1896 - Počet stran: 362
 

Obsah

CONTENTS xiii
50
LamellarSolenoidal Distribution
54
Action of a Permanent Magnet at External Points
60
Analogy with Gravitation Potential
66
CHAPTER IV
73
ARTICLE PAGE 55 LineIntegral of the Demagnetising Intensity
76
Properties of the Resultant Magnetic Intensity
79
Properties of the Magnetisation
80
Properties of the Resultant Magnetic Induction
82
Practical Approximation
83
Ferromagnetic Body conveying a Current
84
Conservation of the Flow of Induction
85
Refraction of the Lines of Induction
86
Representation of the Field by means of Unit Tubes
89
Induced Electromotive Force
91
Faradays Lines of Force
92
Statement of the Problem of Magnetisation
95
Similar Systems Lord Kelvins Rules
96
Uniform Magnetisation
98
Magnetisation of an Ellipsoid
99
Further Special Cases
101
Solution by Successive Superposition
103
CHAPTER V
105
Kirchhoffs Theory
106
Rings of Rectangular and of Circular Section
108
Fundamental Equation of a Radially Divided Toroid
109
First Approximation Limiting Case
111
Divergence of the Lines of Induction
114
Leakage Coefficient
116
Magnetic EndElements on the Boundary Surface
117
Second Approximation
118
Toroid with several Radial Slits
119
The Functions v and n are approximately Reciprocal
121
B Experimental 83 The Iron Toroid Examined
123
Standardisation of the Ballistic Galvanometer
124
Tracing the Normal Curve of Magnetisation
125
Arrangement of the Slit
127
The Curves of Magnetisation
129
Discussion of the Principal Results
130
Comparison of Theory and Experiment
134
Empirical Formula for the Leakage
137
ARTICLE PART IIAPPLICATIONS
139
CHAPTER VI
141
Experiments of Oberbeck with Local Coils
142
Further Experiments by Von Ettingshausen and Mues
143
Theoretical Explanation of the Experiments
145
SelfCompensating Effect of Leakage
146
Principles of the Method B Hopkinsons Synthetic Method
148
Application to Radially Divided Toroids
150
Graphical Representation Transformation of Curves
151
Second Approximation Correction for Leakage
152
Generalisation of the Method
154
Electromagnetic Stress PAGE 141 142 143 145
155
Resultant Tension in the Gap
156
Theoretical Lifting Force of a Diametrically Divided Toroid
158
Resolution and Interpretation of Maxwells Equation
160
Magnetic Lifting Force 105 Older Investigations
161
Wassmuths Experiments
162
Bidwells Experiments Sources of Error
163
Bosanquets Experiments
164
Conclusions from Maxwells
167
LoadRatio of a Magnet
168
CHAPTER VII
170
Older Developments First Stage 112 Continuation Faraday Maxwell
171
Continuation Lord Kelvin
172
Summary
174
ARTICLE PAGE 115 More Recent Developments Rowland
175
Continuation Bosanquet
176
Continuation Kapp Pisati
178
B Modern Conception of the Magnetic Circuit 119 Definitions
179
Ohms Law 181
181
The Magnetic ReluctanceFunction
182
Summary
184
Comparative Tables
186
CHAPTER VIII
189
Predetermination Total Characteristic
190
Armature yielding a Current External Characteristic
192
Investigations of Dr Hopkinson
194
Graphical Construction
195
Frölichs Formula
210
Relation of Frölichs to other Formulæ
211
General Arrangement of the Magnetic Circuit
213
Arrangement of the Field Magnets
214
Continuation PolePieces Material
215
Arrangement of the Armature
217
Arrangement of the Interspace
218
Machines with Multiple Magnetic Circuit
219
Diagrams of Various Magnetic Circuits
220
CHAPTER IX
224
Dissipation of Energy by Hysteresis
226
ARTICLE PAGE 149 Influence of Shape Retentivity Coercive Intensity
228
Permanent Magnets
230
Magnetic Reluctance in Joints
232
Influence of Applied Longitudinal Pressure
235
Time Variations of the Magnetic Conditions
236
Discussion of the Function d Bd He
237
Simplification with Constant SelfInduction
239
Influence of Variable SelfInductors
241
Sinusoidal Electromotive Forces
244
B Electromagnets for exerting Different Kinds of Pull 158 Principle of Least Reluctance
245
Mechanisms depending on Electromagnetism
247
Small Iron Sphere in a Magnetic Field
248
161
249
162
250
163
252
164
253
Electromagnets with Large Lifting Power
255
Description of some Types of Electromagnets
256
167
258
168
261
Description of the Electromagnet
262
170
263
171
265
172
267
Influence of Leakage
268
174
269
Experiments with Truncated Cones
271
Inductors and Transformers 176 Discussion of Mutually Inducing Coils
272
Mutual Induction
273
Action of Induction Coils
275
Magnetic Circuit of Induction Coils
276
Simultaneous Differential Equations of Transformers
277
Action of an Ideal Transformer
279
Influence of Saturation and of Hysteresis
281
Influence of Leakage
282
Transformer Diagrams
283
Core and Shell Transformers
285
Magnetic Circuit of Transformers
286
Eddy Currents Screening Action
287
CHAPTER X
289
B Electrodynamic Methods
296
Standard Flux of Induction
303
E Halls Phenomenon MagnetoElectrical Alteration of Resistance
310
CHAPTER XI
317
Virtual Length of the Magnet
323
ARTICLE PAGE 211 Helmholtzs Method Compensating Coil
324
Searles Curve Tracer
325
Eickemeyers Differential Magnetometer ometer
327
B Electrodynamic Methods 214 Ewings Curve Tracer
328
Apparatus of Koepsel and of Kennelly
331
Induction Methods 216 The Ballistic Method
332
Isthmus Method
333
Yoke Method
335
Various Forms of Closed Yoke
336
Case of great SelfInduction
337
Methods of J and B Hopkinson and of T Gray
339
Kerrs Phenomenon
340
Kundts Phenomenon
342
E Halls Phenomenon Bismuth Spiral 224 Halls Phenomenon Bismuth Spiral
343
F Traction Methods
344
Thompsons Permeameter
345
Magnetic Balance
346
Use of the Balance
349
Magnetohydrostatic Methods
350
INDEX OF NAMES
353
INDEX OF SUBJECTS
356
NOMENCLATURE
361

Další vydání - Zobrazit všechny

Běžně se vyskytující výrazy a sousloví

Bibliografické údaje